Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Phys Chem Chem Phys ; 24(37): 22898-22904, 2022 Sep 28.
Article in English | MEDLINE | ID: covidwho-2036937

ABSTRACT

Coronavirus 3C-like protease (3CLpro) is found in SARS-CoV-2 virus, which causes COVID-19. 3CLpro controls virus replication and is a major target for target-based antiviral discovery. As reported by Pfizer, Nirmatrelvir (PF-07321332) is a competitive protein inhibitor and a clinical candidate for orally delivered medication. However, the binding mechanisms between Nirmatrelvir and 3CLpro complex structures remain unknown. This study incorporated ligand Gaussian accelerated molecular dynamics, the one-dimensional and two-dimensional potential of mean force, normal molecular dynamics, and Kramers' rate theory to determine the binding and dissociation rate constants (koff and kon) associated with the binding of the 3CLpro protein to the Nirmatrelvir inhibitor. The proposed approach addresses the challenges in designing small-molecule antiviral drugs.


Subject(s)
Antiviral Agents , Coronavirus 3C Proteases , SARS-CoV-2 , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Cysteine Endopeptidases/metabolism , Lactams , Leucine , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Nitriles , Peptide Hydrolases/metabolism , Proline , SARS-CoV-2/drug effects
2.
ACS Nano ; 15(9): 14022-14048, 2021 09 28.
Article in English | MEDLINE | ID: covidwho-1380890

ABSTRACT

Polyethylene glycol (PEG) is a flexible, hydrophilic simple polymer that is physically attached to peptides, proteins, nucleic acids, liposomes, and nanoparticles to reduce renal clearance, block antibody and protein binding sites, and enhance the half-life and efficacy of therapeutic molecules. Some naïve individuals have pre-existing antibodies that can bind to PEG, and some PEG-modified compounds induce additional antibodies against PEG, which can adversely impact drug efficacy and safety. Here we provide a framework to better understand PEG immunogenicity and how antibodies against PEG affect pegylated drug and nanoparticles. Analysis of published studies reveals rules for predicting accelerated blood clearance of pegylated medicine and therapeutic liposomes. Experimental studies of anti-PEG antibody binding to different forms, sizes, and immobilization states of PEG are also provided. The widespread use of SARS-CoV-2 RNA vaccines that incorporate PEG in lipid nanoparticles make understanding possible effects of anti-PEG antibodies on pegylated medicines even more critical.


Subject(s)
COVID-19 , Polyethylene Glycols , Humans , Liposomes , RNA, Viral , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL